OTHER TOPICS

COOLANT CHEMISTRY & CORROSION

Use of Film Forming Amines (FFA) in Nuclear Power Plants for Lay-up and Power Operation

(LCC13 AR)
This report presents a new corrosion inhibitor based on film forming amines (FFA), which are often referred to as fatty amines or polyamines. FFA can form a mono-molecular hydrophobic film or layer adsorbed on the metal surfaces, that constitutes a homogeneous protective barrier against corrosion by its water-repellent behaviour. FFA belongs to chemical substances of the class of oligo alkylamino fatty amines, the simplest one being the well-known Octadecylamine (ODA). Due to the volatility of the film forming amine, the whole steam water cycle can be protected. The high affinity to surfaces can lead to a slow removal of surface deposits such as loose magnetite and impurities. FFA’s are successfully used as water treatment additives for several decades, in steam water cycles of the VVER type in Eastern Germany and Russia with positive treatment results.

For several years, AREVA has very successfully applied this treatment using a specific procedure in several PWR plants. The purposes are to control the corrosion product transport into steam generators during power operation and for long time lay-up of whole steam water cycle without using hydrazine. Even in a BWR plant this FFA treatment was applied in several parts of steam water cycle with success. This report explains the mechanism of the FFA chemistry treatment and summarises the published information regarding the application results achieved in western nuclear plants.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

The Underestimated Role of the Oxygen on RCS Component Failures

(LCC13 AR)

PWR chemists may claim that there is no oxygen in the Reactor Cooling System because hydrogen injection suppresses the oxidising species generated by radiolysis. This is why, at EDF, the RCS has no oxygen monitoring. In fact, this assessment is true only if free flowing conditions are considered. The RCS contains many flow-restricted or occluded zones where some chemistry deviations can occur, one being the presence of oxygen.

This report aims to keep the plant chemists alert regarding oxygen tracking, ingress, venting, scavenging, monitoring. It also shows some examples of field failures that occurred because oxygen presence was not anticipated in the environment. This report helps plant engineers understand why they should stay alert regarding oxygen control. The report shows there are several ways to limit oxygen ingress or to scavenge oxygen in the RCS. The oxygen specification may seem stringent, however the failures presented in this report support a non-deviation application of the RCS oxygen specification.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Strategic Plans for Primary and Secondary Water Chemistry Programmes

(LCC13 AR)

The U.S. requirements for a Strategic Water Chemistry Plan, despite the additional work for plants, has been a benefit to U.S. nuclear utilities. The reasons for this are that it requires plants to consider the balance of plant components and their chemistry considerations to the overall integrity of the steam generator integrity, primary system pressure boundary and the fuel cladding integrity. This not to imply that either U.S. utilities or non-U.S. utilities would not consider these issues in developing their own water chemistry plans. However, these voluntary commitments by the U.S. nuclear utilities has probably reduced the regulatory requirements imposed by the NRC, although this is not known for certain.

This document explains the Objective and Optimisation Methodology of this Strategic Water Chemistry Plan. For the Primary Coolant, it includes the Parameters Impacting or not the Pressure Boundary or Fuel Cladding Integrity. For the Secondary System, it includes the key elements and the components susceptibility and reliability. The report is of benefit to those non-U.S. utilities in developing their own water chemistry programs, both primary and secondary side.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

LCC5 Annual Report

The Report covers the following topics:

  • PWR/VVER primary side coolant chemistry
  • BWR coolant chemistry
  • PWR and VVER secondary side chemistry
  • Materials degradation
  • Intergranular stress corrosion cracking and irradiation-assisted stress corrosion cracking of cold worked/irradiated stainless steels in de-oxygenated PWR-type coolants

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

LCC4 Annual Report

The Report covers the following topics:

  • Nuclear plant primary water chemistry experience (PWR, VVER and BWR)
  • Water chemistry sampling and monitoring (PWR, VVER and BWR)
  • Corrosion product control and sampling technique (secondary side, PWR, VVER)
  • Material degradation management
  • Fuel /water chemistry interaction
  • Behaviour of radiolysis gases in BWRs and PWRs

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

LCC2 Annual Report

The Report covers the following topics:

  • Coolant Quality and Control Issues – PWR/VVER Water Chemistry – BWR water chemistry
  • Structural Materials Degradation
  • Primary Circuit Corrosion (BWRs and PWRs) – SCC, PWSCC in PWRs – SCC in BWRs and remedies (HWC, NMCA)
  • Dose Rate Buildup and Control (BWRs and PWRs)

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

LCC1 Annual Report

The Report covers the following topics:

  • Coolant Quality and Control Issues – PWR Water Chemistry – BWR water chemistry
  • Materials selection for the primary BWR and PWR circuits
  • Primary Circuit Corrosion (BWRs and PWRs) – SCC, PWSCC in PWRs – SCC in BWRs and remedies (HWC, NMCA)
  • Dose Rate Buildup and Control
  • Fuel/Water Chemistry Interaction

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Key Issues in Plant Chemistry and Corrosion – PWR, VVER, CANDU – 2018

(LCC14)

This first report on PWRs, VVERs, CANDUs and PHWRs summarises and analyses the results to assess in which specific situation the results are applicable and gives the point of view of A.N.T. International expert. Instead of giving a short summary of each paper presented at the conference, the report covers the key facts, either new or of significant interest for LCC customers.

This is of particular interest to discuss how to consider different presentations that may sometimes give contradictory or conflicting results.
The main examples concern zinc addition into the primary coolant, potential replacement of LiOH by KOH in PWRs as used in VVERS, Film Forming Amines, dispersant addition, hydrazine alternates. The advantages, disadvantages, questions or limitations of new solutions are explained.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Key Issues in Plant Chemistry and Corrosion in BWRs – 2018

(LCC14)

The second report summarising the BWR related papers and various other subjects is designed to provide updated information with the author’s critique and analysis for the benefit of the LCC customers. The report is expected to be a comprehensive summary document incorporating the latest information on BWR water chemistry and decommissioning that would benefit the operators and regulators, and those who have not been able to attend the NPC 2018 Conference.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET