Welding of Zirconium Alloys

(ZIRAT12/IZNA7 STR)
The welding of Zirconium Alloy components is one of the most critical manufacturing processes of Nuclear Reactor fuel. Small amounts of contamination resulting from inadequate cleanliness or from poor atmospheric control during welding may lead to diminished corrosion resistance of the weld and in severe cases to weld failure. Other weld defects such as piping, pore formation or insufficient weld penetration may also result in costly fuel failures. This Report describes the different welding processes used for the various fuel assembly components. A comprehensive discussion of welding Quality Management is included.

DOWNLOAD SAMPLE

PWR Zr Alloy Cladding Water Side Corrosion (PZAC)

The Report discusses the different parameters impacting PWR fuel corrosion and provides a computer code which allows an equivalent comparison of new alloys irradiated in different reactors at different conditions. The computer code may also assist in identifying the mechanism why the corrosion rate starts to accelerate under certain conditions.

DOWNLOAD SAMPLE

Performance Evaluation of New Advanced Zr Alloys for PWRs/VVERs

(ZIRAT16/IZNA11 STR)
To meet the current situation with more aggressive reactor environments, a large number of zirconium alloys have been and are being developed. The objective of this Report is to ensure that the new Zirconium Alloys performs satisfactory during normal operation, Anticipated Operational Occurrences (AOOs), postulated accidents and intermediate dry storage.

DOWNLOAD SAMPLE

Performance Evaluation of New Advanced Zr Alloys for BWRs and PWRs/VVERs Vol. II

(ZIRAT22/IZNA17)

To meet the current situation with more aggressive reactor environments (higher burnups, changing water chemistries and loading patterns), and resolving fuel performance issues such as BWR channel bowing and PWR assembly bowing, a large number of zirconium alloys have been and are being developed. The main driver for the initial material development in Pressurised Water Reactors (PWRs) has been to reduce corrosion rates and Hydrogen Pick-Up Fractions (HPUFs), which have occasionally limited the maximum discharged burnup.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Performance Evaluation of New Advanced Zr Alloys for BWRs and PWRs/VVERs Vol. I

(ZIRAT22/IZNA17)

To meet the current situation with more aggressive reactor environments (higher burnups, changing water chemistries and loading patterns), and resolving fuel performance issues such as BWR channel bowing and PWR assembly bowing, a large number of zirconium alloys have been and are being developed. The main driver for the initial material development in Pressurised Water Reactors (PWRs) has been to reduce corrosion rates and Hydrogen Pick-Up Fractions (HPUFs), which have occasionally limited the maximum discharged burnup.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Material Test Reactors and other Irradiation Facilities

(ZIRAT23/IZNA18)

In materials test reactors (MTRs), materials are subject to intense neutron irradiation to study the induced changes. As MTRs are able to reproduce material degradation undergone by materials in power reactors, they provide essential support to the study of ageing of materials in power reactors. MTRs are also being used to irradiate new cladding materials and fuels that are being developed as Accident Tolerant Fuel (ATF) systems.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Impact of Irradiation on Material Performance

(ZIRAT10/IZNA5 STR)
Reactor neutron irradiation dramatically affects the properties and performance of all the materials in the reactor core. This report focuses on the behaviour of zirconium alloys used for the main structural components in the fuel bundle and should provide a solid understanding of the role that irradiation plays in component performance. This report is a complementary companion to the Structural Behaviour of Fuel Components (ZIRAT10/IZNA5 STR)

DOWNLOAD SAMPLE

Hot Cell Post-Irradiation Examinations Volume II

(ZIRAT21/IZNA16)

Maintaining and improving reliability of fuel and structural components requires an understanding of their behaviour in reactor and the mechanisms that have been observed to cause failures. A key factor in improving reliability is the identification of the cause or causes of failure. Such information, in turn, requires the examination and analysis of irradiated fuel (including bundle hardware) and structural components at reactor sites (poolside examinations), in hot cells and in related laboratories. Thus, to make progress toward ultra-high reliability fuel and to reduce the potential for fuel failure, it is imperative to examine both failed and non-failed (reference) fuel.

Post-irradiation examinations (PIE) provide fuel vendors and nuclear utilities with data on how newly developed or established materials withstand normal operating conditions in new environments. Post-irradiation examinations are largely carried out at a Hot Cell Laboratory where irradiated fuel rods and other hardware can be received, handled, examined, and tested. The investigation results provide information for fuel and component improvement and, thereby, can potentially enhance operating efficiency and reliability.

  • Section 1 provide an overview about the status of post-irradiation examination (PIE) and inspection techniques for nuclear fuel and other zirconium alloy components used in CANDU reactors and their applications for analysis of materials behaviour in a CANDU reactor core.
  • Section 2 discusses these techniques along with real world examples of in-reactor microstructural changes and impact on material behaviour.
  • Section 3 provides information on PIE capabilities of some of the major hot cell facilities. This information will be useful for utility engineers when they need to have PIE performed on failed nuclear fuel or other components.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET

Hot Cell Post-Irradiation Examination Techniques for Light Water Reactor Fuels

(ZIRAT19/IZNA14 STR)
Hot Cell Post-Irradiation Examination Techniques for Light Water Reactor Fuels The growing operational demands on nuclear fuel, such as longer fuel cycles, higher burnups, and use of transient regimes, call for more robust fuel designs and more radiation resistant materials. Implementation of new materials and fuel designs that are able to meet these more challenging conditions requires adequate operational feedback and practical verification of models for prediction of fuel behavior. Post-irradiation examinations (PIE) provide fuel vendors and nuclear utilities with data on how newly developed or established materials withstand normal operating conditions in new environments. Post-irradiation examinations are largely carried out at a Hot Cell Laboratory where irradiated fuel rods and other bundle hardware can be received, handled, examined, and tested. The investigation results provide information for fuel improvement and, thereby, can potentially enhance operating efficiency and reliability. The objectives of the hot cell examination of failed and sound sibling rods are to; characterize the fuel rod conditions associated with failure, identify the fuel failure mechanism, and provide insight into the root cause of the failures. The objectives of the hot cell examination of the fuel bundle hardware vary with the component being examined. The hot cell examinations/testing include a number of tasks selected to address these objectives using available hot cell capabilities. This Special Topic Report provides an overview about the status of post-irradiation examination (PIE) and inspection techniques for nuclear fuel and their applications for analysis of material degradation during fuel operation in a reactor core. Emphasis is given to advanced non-destructive and destructive PIE techniques applied to LWR fuel rods and bundle hardware. The objective of this STR is to provide this knowledge.

DOWNLOAD SAMPLE  | DOWNLOAD PRODUCT SHEET